The QUICKSORT PROCESS

Mahmoud Ragab and Uwe Roesler

- Online Quicksort streaming
- Mathematical formulation
- Results: Quicksort process in D
- Abstraction and Reflection
- Embedding into weighted branching process

QUICKSORT STREAMING

Algorithm: QUICKSORT STREAMING

Input: Set S of n different reals.

Output: Online the smallest, then second smallest and so on.

Procedure: Divide like in Quicksort, continue with left list.

- Choose random pivot within S

- Split S into $S_{<}$, { pivot }, $S_{>}$, stored in this order.

– Continue with S_{\leq} recursively unless empty.

- If $|S_{<}| = 1$ output the element. Continue with next list.

78, 90, 46, 60, 88, 24, 95, 47, 98 78, 46, 60, 24, 47, **88**, 90, 95, 98 24, **46**, 78, 60, 47, **88**, 90, 95, 98

publish 24 and 46

60, 47, **78**, **88**, 90, 95, 98

47, 60, **78**, **88**, 90, 95, 98

publish 47, 60, 78, 88,

90, 95, 98

publish 90

95, **98**

publish 95 and 98

RECURSION

Let X(S, l) be number of comparisons up to l-th smallest

$$\begin{split} (X(S,l))_l \; &= \; (n-1+\mathbbm{1}_{I < l}(X(S_<,I-1)+X(S_>,l-I)) \\ &+ \; \mathbbm{1}_{l < I}X_1(S_<,l))_l \end{split}$$

 $l=1,2,\ldots,|S|.$ I uniform distribution and independent of all X-rvs. $I=|S_<|+1$ denotes rank of pivot after comparisons.

X(S, |S|) has Quicksort distribution.

Replace S by permutation.

Internal randomness: $X(S, \cdot)$ has distribution $X(|S|, \cdot)$ depending on cardinality.

External randomness: Input permutation with uniform distribution or iid rvs taking the first as pivot. Randomness in input, performance deterministic.

In either case $(X(S,l))_l \stackrel{\mathcal{D}}{=} (X(|S|,l))_l$ and

$$(X(n,l))_l \stackrel{\mathcal{D}}{=} (n-1+\mathbb{1}_{I \le l+1}(X_1(I-1,I-1)+X_2(n-I,l-I)) \\ + \mathbb{1}_{I > l+1}X_1(I-1,l))_l$$

where I = I(n). This determines the distribution.

EXPECTATION

$$a(n,l) = EX(n,l)$$

$$a(n, l) = fct(n, (a_i)_{i < n}).$$

C. Martinez, Partial Quicksort

$$a(n,l) = 2n + 2(n+1)H_n - 2(n+3-l)H_{n+1-l} - 6l + 6.$$

 H_n *n*-th harmonic number $\sum_{i=1}^n \frac{1}{i}$.

DISTRIBUTION

$$Y(n, \frac{l}{n}) := \frac{X(n, l) - a(n, l)}{n+1}$$

$$I = I(n)$$

$$Y(n,\cdot) \stackrel{\mathcal{D}}{=} (\mathbb{1}_{I \le l+1} (\frac{I}{n+1} Y_1(I-1,I-1) + \frac{n-I+1}{n+1} Y_2(n-I,\frac{l-I}{n-I})) + \mathbb{1}_{I > l+1} \frac{I}{n+1} Y_1(I-1,\frac{l}{I-1}) + C(n,\frac{l}{n},I))_l$$

where

$$\begin{split} C(n,\frac{l}{n},I) \; &= \; \frac{1}{n+1} (\mathbbm{1}_{I \leq l+1}(a(I-1,I-1) + a(n-I,l-I)) \\ &+ \; \mathbbm{1}_{I > l+1} a(I-1,l) - a(n,l) + n - 1 \end{split}$$

WISHFUL THINKING

Extend $Y(n, \cdot)$ nicely (piece wise constant or linear) to a rv Y_n with values in D

If $Y_n \to Y$ in some sense

$$(Y(t))_{t \in [0,1]} \stackrel{\mathcal{D}}{=} (\mathbb{1}_{U \leq t}(UY_1(1) + (1-U)Y_2(\frac{t-U}{1-U})) + \mathbb{1}_{U > t}UY_1(\frac{t}{U}) + C(U,t)$$

on $D. Y_1, Y_2, U$ independent, U uniformly on [0, 1].

$$\begin{split} C(x,t) &= 1 + 2x \ln x + 2(1-x) \ln(1-x) \\ &+ 2\mathbbm{1}_{x \geq t} ((1-t) \ln(1-t) + (1-x) \ln(1-x) + 1) \\ &- (x-t) \ln(x-t) \end{split}$$

where $C(n,\cdot,I) \to_n C(U,\cdot)$

QUICKSORT PROCESS

Theorem Ragab-R.

There exists a fixed point Y as above with values in D.

Y is Quicksort process. Observation is a path, ω fixed

$$[0,1] \ni t \mapsto Y(\omega)(t)$$

Proof via weighted branching process (plus some trick) on $(D, \|\cdot\|_{\infty})$ and L_2 . Neininger via Zolotarev ζ_2 .

DISCRETE QP

Theorem Ragab-R.

There are nice versions of Y_n converging in Skorodhod metric on D to Y. a.e.

 $d(f,g) = \inf\{\epsilon > 0 \mid \exists \lambda \in \Lambda : \|f - g \circ \lambda\|_{\infty} < \epsilon, \|\lambda - \mathrm{id}\|_{\infty} < \epsilon\}$ where Λ is the set of all bijective increasing functions $\lambda : [0,1] \to [0,1].$

Convergence: $E(f(Y_n)) \to E(f(Y))$ for all bounded continuous functions on D.

WEIGHTED BRANCHING PROCESS

MEASURES versus FUNCTIONS

Structure: V rooted tree

 $v \mapsto Z^v$ defined via tree vV.

Transformation φ^v such that

$$Z^v = \varphi^v((Z^{vi})_i)$$

Objects $(Z^v, \varphi^v)_v$ as tree indexed process

$$(Z_n^v, \varphi_n^v)_v \longrightarrow_n (Z^v, \varphi^v)_v$$

Measure theory: Z^v a measure μ^v ,

- Dynamics φ^v deterministic function
- Methods: contraction method, generating function
- Convergence $\stackrel{\mathcal{D}}{=}$,

In many examples $\mu_n^{\emptyset} \to_n \mu^{\emptyset}$ like contraction method

Probability theory: Z^v a random variable

- Dynamics φ^v is itself a random function
- Methods: martingales, functional analysis
- Convergence: almost everywhere, stochastic convergence, L_p In many examples $Z_n^{\emptyset} \to_n Z^{\emptyset}$ like in FIND Gruebel-Roesler 96, Monday Fill, Gruebel, Meiners,

COMPLEMENTARY

Which method is better?

Both help to analyse and are complementary.

Example: Fern $X_n = A_n X_{n-1} + B_n$ in \mathbb{R}^2 plotting of $(X_n)_n$ provides picture Fern.

Fern

Analysis, X_n does not converge in probabilistic sense.

But $\mu_n = X_n$ converges weakly to μ .

Argument by version $Y_n \to Y$ a.e. as rvs. (Kesten 73)

Fern is support of μ , a fixed point of stochastic fixed point equation, Burton-R 95

WEIGHTED BRANCHING PROCESS

WBP Roesler 93

A weighted branching process (WBP) is tupel $(V, (T^v, C^v)_{v \in V}, (G, *, H))$

- V a rooted tree. Ulam-Harris notation.
- $\bullet \ v \mapsto C^v, \qquad (v, vi) \mapsto T_i^v$
- $(T^v = (T_1^v, T_2^v, \ldots), C^v), v \in V$, independent with values in $G \times H$.
- (G, *) is measurable semi group $(*: G \times G \to G, *(g, h) = g * h$ associative and measurable) with neutral element e and grave \triangle
- (G,*) operates transitive and measurable on H via $*_1: G \times H \to H$.

Define the path weights $(v, vw) \mapsto L_v^w$ with values in G recursively by $L_\emptyset^v = e$ and

$$L_{wi}^v = L_w^v * T_i^{vw}.$$

Suppress \emptyset .

For our purposes, H has additional structure +

$$R_n = \sum_{|v| < n} L_v *_1 C^v$$

and $\varphi:G^{I\!\!N}\times H\times H^{I\!\!N}\to H$ like

$$\varphi(t,c,r) = \sum_{i} t_i *_1 r_i + c$$

affine linear function.

WEIGHTED BRANCHING PROCESS

Quicksort: G is multiplicative semi group $I\!\!R$ with neutral element e=1 and grave $\Delta=0$. G operates transitive on $H=I\!\!R$ by multiplication. Let $U^v, v \in V$ be independent rvs with a uniform distribution on [0,1]. Put

$$T_1^v = U^v, \quad T_2^v = 1 - U^v, \quad T_3^v \equiv 0 \equiv T_4^v \dots \quad C^v = C(U^v)$$

where

$$C(x) = 1 + 2x \ln x + 2(1-x) \ln(1-x).$$

Then $R_n := \sum_{|v| < n} L_v C^v$ is L_2 -martingale.

$$R_n \to_n Q$$

a.e. and in L_2 . Quicksort distribution

$$Q = UQ^{1} + (1 - U)Q^{2} + C(U)$$

with expectation 0 and finite variance.

 $R_n^v \to Q^v$ a.e. on tree vV and

$$Q^{v} = U^{v}Q^{v1} + (1 - U^{v})Q^{v2} + C(U^{v})$$

for every $v \in V$.

Distribution:

$$K(\mu) \stackrel{\mathcal{D}}{=} UX_1 + (1 - U)X_2 + C(U)$$

$$K^n(\delta_0) = \mathcal{L}(R_n) \to \mathcal{L}(Q)$$

QUICKSORT PROCESS as WBP

 $G = D \times D_{\uparrow}$, neutral element (1, id) and grave identically 0.

$$(f_1,g_1)*(f_2,g_2):=(f_1\cdot f_2\circ g_1,g_1\circ g_2).$$

$$H = D$$
 and $(f, g) *_1 h := f \cdot h \circ g$.

Let (U^v, Q^v) , $v \in V$ be as in the Quicksort example. Define

$$T = (T_1, T_2, \dots,), T_i = (A_i, B_i), C$$
 by

$$A_1 = U \mathbb{1}_{[0,U)}, \quad A_2 = (1-U)\mathbb{1}_{[U,1)}, \quad A_3 \equiv 0 \equiv A_4 \equiv 0$$

$$B_1(t) = 1 \wedge \frac{t}{U}, \quad B_2(t) = 0 \vee \frac{t - U}{1 - U}, \quad B_3 = id = B_4 \dots$$

$$C = A_1 Q + C(U, \cdot)$$

$$C(x,t)$$
 as before.

$$(T^v, C^v)$$
 via (U^v, Q^v)

Define

$$R_n^v := \sum_{w \in V_{\leq n}} L_w^v *_1 C^{vw}$$

and

$$\varphi(t,c,r) = \sum_{i \in \mathbb{N}} t_i r_i + c.$$

Then $R_n \to_n R$ in sense $||||R_n - R||_{\infty}||_2$.

DISCRETE QP as WBP

Choose $I^v(n) = \lfloor nU^v \rfloor + 1$. That's it