The QUICKSORT PROCESS

Mahmoud Ragab and Uwe Roesler

— Online Quicksort streaming

— Mathematical formulation

— Results: Quicksort process in D

— Abstraction and Reflection

— Embedding into weighted branching process



QUICKSORT STREAMING

Algorithm: QUICKSORT STREAMING

Input: Set S of n different reals.

Output: Online the smallest, then second smallest and so on.
Procedure: Divide like in Quicksort, continue with left list.
— Choose random pivot within S

— Split S into S, { pivot }, S~ stored in this order.

— Continue with S_ recursively unless empty.

—If |S<| = 1 output the element. Continue with next list.
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RECURSION
Let X (S,1) be number of comparisons up to I-th smallest

(XS, D)) = (n— 14+ 1 (X(S<, T —1) + X(S55,1— 1))
+ 11 X1(S-, 1))

[ =1,2,...,]S|. I uniform distribution and independent of all X-
rvs. I = |S-| + 1 denotes rank of pivot after comparisons.

X (S, |S]) has Quicksort distribution.

Replace S by permutation.

Internal randomness: X (S, -) has distribution X (|.S|, -) depend-
ing on cardinality.

External randomness: Input permutation with uniform distri-
bution or iid rvs taking the first as pivot. Randomness in input,
performance deterministic.

In either case (X(S,1)); £ (X(|S],1)); and

(X(n, D)) 2 n=1+1cn(X0(I = 1,1 = 1)+ Xo(n—1,1=1))
+ Lo Xa(d = 1,1));

where I = I(n). This determines the distribution.



EXPECTATION
a(n,l) = EX(n,l)
a(n,l) = fet(n, (a;)i<p)-
C. Martinez, Partial Quicksort

an,l)=2n+2n+1)H, —2(n+3—1)H,,1_; — 6l + 6.
1

H,, n-th harmonic number = -.



DISTRIBUTION
I, X(n,l)—a(n,l)

Y(n,—):=
n n—+1

I =1(n)

I n—I1+1 [ —1
Y 21 Yi(I—1.1—1 Yoln — I
(n, ) (Lr<ra( 1 ) ) nt 1 o(n ’n—]>)

[ [
+ IlI>H—1 i 1}/1<[ - 17?) +C<nag71)>l
where
C( iI)—L(]l (el =1, =1)+an—-1,1—-1))
nvna — n+ 1 I<i+1\a ) asmn )

+ Uyspa(l = 1,1) —a(n,d)+n—1



WISHFUL THINKING

Extend Y'(n,-) nicely (piece wise constant or linear) to a rv Y,
with values in D
It Y, — Y in some sense

(¥ (Drepos) 2 Aoz UVi()+1-U) (-~ )+

on D. Y1,Y5, U independent, U uniformly on [0, 1].

C(z,t) = 14+2xlnx+2(1 —z)In(l — x)
+21,>((1 =) In(1 —t)+ (1 —2)In(l —2)+ 1)
—(z —t)In(x — t)

where C(n, -, I) —, C(U,-)

DL UYi () C(U, 1

U



QUICKSORT PROCESS

Theorem Ragab-R.
There exists a fixed point Y as above with values in D.

Y is Quicksort process. Observation is a path, w fixed
0,1] 5 ¢ = Y(w)(t)

Proof via weighted branching process (plus some trick) on (D, ||-||~)
and Lo. Neininger via Zolotarev (5.



DISCRETE QP

Theorem Ragab-R.
There are nice versions of Y,, converging in Skorodhod metric on
DtoY. ae.

d(f,g)=infle>0|IAEAN:||f —go || <€ ||A—id|s < €}

where A is the set of all bijective increasing functions
A [0,1] — [0, 1].

Convergence: E(f(Y,)) — E(f(Y)) for all bounded continuous
functions on D.



WEIGHTED BRANCHING PROCESS




MEASURES versus FUNCTIONS

Structure: V rooted tree
v +— /Y defined via tree vV,
Transformation ¢" such that

Z" = "((Z™);)
Objects (27, "), as tree indexed process

(Zg, @Z)v —n (Zva SOU>U

Measure theory: 7Y a measure u’,

— Dynamics ¢ deterministic function

— Methods: contraction method, generating function

— Convergence 2,

In many examples ,u?l —,, 1Y like contraction method
Probability theory: Z" a random variable

— Dynamics " is itself a random function

— Methods: martingales, functional analysis

— Convergence: almost everywhere, stochastic convergence, L,
In many examples Z? —,, Z°

like in FIND Gruebel-Roesler 96, Monday Fill, Gruebel, Meiners,



COMPLEMENTARY

Which method is better?
Both help to analyse and are complementary.
Example: Fern X,, = A,X,_1 + B,, in IR?
plotting of (X,,), provides picture Fern.

Fern

Analysis, X,, does not converge in probabilistic sense.
But u, = X,, converges weakly to .
Argument by version Y, — Y a.e. as rvs. (Kesten 73)

Fern is support of i, a fixed point of stochastic fixed point equa-
tion, Burton-R 95



WEIGHTED BRANCHING PROCESS

WBP Roesler 93
A weighted branching process (WBP) is tupel (V, (T, C")yev, (G, %, H

e I/ a rooted tree. Ulam-Harris notation.

ovi— (" (v,vi) — TY

o (T = (17,1T3,...),C"), v € V, independent with values in
G x H.

e (G, *) is measurable semi group (x : GXG — G, *(g,h) = g*h
associative and measurable) with neutral element e and grave A

e (G, *) operates transitive and measurable on H via *; : G X

H — H.

Define the path weights (v, vw) +— LY with values in G recursively
by Lj = e and

Suppress (.



For our purposes, H has additional structure +

Rn: > Lv*l()”

lv|<n
and ¢ : GV x H x HN — H like
p(t,e,r)=3ti*xim+c

affine linear function.



WEIGHTED BRANCHING PROCESS

Quicksort: G is multiplicative semi group IR with neutral element
e = 1 and grave A = 0. G operates transitive on H = IR by
multiplication. Let U", v € V be independent rvs with a uniform
distribution on [0, 1]. Put

w=0u" Ty=1-U0" 1Ty=0=1,... C"=C(U")
where
Clz)=14+2zlnx+2(1 —z)In(l — ).
Then R, := ¥y« L,C" is Lo-martingale.
Ry —p @
a.e. and in Ls. Quicksort distribution
Q=UQ" +(1-U)Q*+C(U)

with expectation 0 and finite variance.
R) — Q¥ a.e. on tree vV and

Qv _ UUQvl + (1 . UU)QUQ + C(UU)

for every v € V.
Distribution:

K(p) 2UX1+(1-U)Xy+C(U))
K"(0o) = L(R,) — L(Q)






QUICKSORT PROCESS as WBP

G = D x Dy, neutral element (1,id) and grave identically 0.

(f1,91) % (f2,92) = (f1- f20 91,91 0 g2).
H=Dand (f,g)%x1h:=f-hogy.
Let (U, Q"), v € V be as in the Quicksort example. Define

T:<T17T27"'7 ) E:<A27BZ)7 be
Al — Uﬂ[()’U), AQZ (1_U)1[U,1)7 Ag EOEA4EO
t t—U :
Bl(t):1/\ﬁ7 Bg(t):() m, BgZZd:B4...

C'(x,t) as before.
TV, C") via (U, Q")



Define
R;Jl = > va x O

and

o(t,c,r) = igjw tir; + c.

Then R,, —, R in sense ||||R, — R||o|2-



DISCRETE QP as WBP
Choose I"(n) = [nU"] 4+ 1. That’s it



